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Abstract
Transportation systems primarily depend on vehicular flow on roads. Developed coun-
tries have shifted towards automated signal control, which manages and updates signal
synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly
governed by manual traffic light systems. These existing manual systems lead to numerous
issues, wasting substantial resources such as time, energy, and fuel, as they cannot make
real‐time decisions. In this work, we propose an algorithm to determine traffic signal
durations based on real‐time vehicle density, obtained from live closed circuit television
camera feeds adjacent to traffic signals. The algorithm automates the traffic light system,
making decisions based on vehicle density and employing Faster R‐CNN for vehicle
detection. Additionally, we have created a local dataset from live streams of Punjab Safe
City cameras in collaboration with the local police authority. The proposed algorithm
achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both
day and night modes, our proposed method maintains an average precision, recall, F1
score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our
proposed work surpasses all evaluation metrics compared to state‐of‐the‐art
methodologies.
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1 | INTRODUCTION

Intelligent transportation systems (ITS) use technology to
make our roads, highways, and transit systems easier, safer, and
more efficient [1]. The collection of traffic data has always been

one of the major research areas in operational analysis and
capacity evaluation of the transportation network [2]. Traffic
jams are one of the major challenges in today's urban traffic
systems. As stated by the transportation department, traffic
jams are of two types [3]. Non‐recurring is the first one that
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occurs because of temporary disturbances, such as road acci-
dents and bad weather. Traffic jams that occur due to inade-
quate or lack of road infrastructure are recurring, and around
the world, half of the traffic jams are recurring.

In 2023, the Traffic Index Report from the Dutch navi-
gation technology company Tom provided statistics on traffic
congestion in 387 cities across 55 countries [4]. According to
the most recent index report, city traffic congestion increased
by 75%. A study showed that every year, drivers in the UK
waste more than a day in traffic jams [5]. According to a survey,
people waste 8.15 million hours yearly in traffic jams [6].
Traffic congestion is a concern in Pakistan's crowded cities,
including Karachi, Faisalabad, Lahore, Hyderabad, and Guj-
ranwala. Vehicle counting is an essential component of ITS for
city traffic management, and information on traffic flow is
gathered by counting vehicles [7]. Traffic controlled by fixed
time intervals is one of the leading causes of traffic jams.

People must wait long because this technology only oper-
ates when traffic is on the road, leading to inefficiency. The
survey found that of the 200,000 traffic signals in the US, 7%
of travellers' trip time was lost waiting at them [8]. The typical
one‐way traffic light automation system, which regulates traffic
by using Radio‐frequency identification tags on the number
plates, is one solution for the inefficiencies of fixed time in-
terval traffic lights. The other solution detects vehicles simul-
taneously by placing pressure plates on the road. It detects the
car when it reaches a precisely specified limit. The vehicle will
be given a maximum and minimum time until the traffic load
returns to normal if the vehicle is present. Additionally, these
existing solutions do not count the cars. As a result, the sensors
will only adjust the signal light when vehicles are around; the
result is still ineffective. To solve this problem, we need a
dynamic traffic light system that counts the number of vehicles
and then assigns the time accordingly. Figure 1 shows a traffic
jam that is captured by Punjab Safe City cameras.

So, in most countries, traffic control based on traffic
density is done in two ways [9–11]. The first method involves a
traffic warden manually directing traffic. However, it is quite
challenging for a human to stand in the middle of the road and
direct traffic from all directions. The cost of managing human
resources in this way is comparatively high. The second
method involves utilising closed circuit television (CCTV)
cameras to monitor traffic via the control room. Still, it is
difficult for a human to monitor the screens continuously. A
model for detecting traffic congestion by camera images was
proposed by Chakraborty et al. [12]. They employed two
methods for detection: the first is known as you only look once
(YOLO), and the second is deep convolutional neural
network (DCNN). They used 1400 images in the dataset. They
used a support vector machine to compare and apply deep
learning to determine the improvement. Their proposed
research found that the accuracy of the support vector ma-
chine was 85.2%. The hardware‐based methods for detecting
vehicles, such as radars and light detection and ranging tech-
nologies, are relatively expensive. Most software techniques still
employ traditional methods such as the Gaussian Mixed Model
and the Histogram of Gradients [13]. Traditional image

processing techniques have limitations, including weather
conditions and low light [14]. Many of the methods described
here have focused on limited visual data. We use local image
data to generalise our traffic situation. This work presents a
framework for automating the traffic light signals using an
improved Faster R‐CNN deep learning‐based approach to
local image data.

The aforementioned methods have only utilised a limited
amount of visual image data. However, our research in-
corporates local image data, enabling us to address critical
traffic scenarios effectively. Our primary focus lies in devel-
oping a Faster R‐CNN‐based traffic light automation system.
By leveraging live video streams from CCTV cameras, we have
devised an algorithm that utilises state‐of‐the‐art computer
vision technology to accurately count vehicles. This algorithm
automatically adjusts the traffic signal timing based on the
traffic volume, thereby optimising traffic flow.

We leverage the Faster R‐CNN for vehicle detection tasks
in this work. However, YOLO object detection algorithms are
also widely used in vehicle detection applications. Faster R‐
CNN and YOLOv6 [15] are both state‐of‐the‐art object
detection algorithms, but they have some critical differences in
their advantages. Faster R‐CNN generally achieves higher
detection accuracy compared to YOLOv6 [16]. It utilises a
region proposal network (RPN) to generate potential object
bounding boxes, which allows it to have a more precise
localisation of objects. This two‐stage approach improves ac-
curacy, especially for detecting small objects or objects with
complex shapes. Faster R‐CNN performs well in detecting
small objects due to its region proposal mechanism. The RPN
generates region proposals at different scales, which helps
capture small objects more effectively [17].

In contrast, YOLOv6 struggles to detect small objects
accurately because it relies on a single‐scale prediction. Faster
R‐CNN allows for end‐to‐end training, enabling joint opti-
misation of the RPN and the object detection network. This
flexibility is advantageous when working with limited labelled
data or adapting the model to specific domains. YOLOv6, on
the other hand, adopts a fixed architecture, limiting the training
process. Faster R‐CNN employs selective search as the default
region proposal method, an efficient algorithm for generating
potential object locations. This selective search approach helps
reduce the number of region proposals to be processed,
making the algorithm faster and more efficient than the grid‐
based approach used in YOLOv6. Faster R‐CNN handles
overlapping objects more effectively than YOLOv6. The two‐
stage architecture of Faster R‐CNN allows it to assign objects
to different regions in the image accurately, even when they are
closely packed or overlapping. YOLOv6, being a single‐shot
detector, may struggle in such scenarios and may have diffi-
culty distinguishing individual objects [18].

To train our algorithm, we employed a local dataset, which
proved to be more suitable for our specific situation. We
labelled the images by utilising local CCTV cameras and con-
verting the video streams into images for training purposes. We
divided the dataset into a 70% training set and a 30% test set.
The model underwent training for up to 200,000 epochs.
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We rigorously evaluated the performance of our model
using real‐time video streams from CCTV cameras. Our pro-
posed model detected and counted all vehicles within the
camera frame, including front and back views. The accuracy of
our vehicle detection algorithm, based on Faster R‐CNN,
reached an impressive 95.7%. For training, we utilised the
COCO Vehicle dataset [19] and trained our model for 200,000
epochs, resulting in a class accuracy (CA) of 96.6% for our
proposed model.

The contributions made in this work are as follows.

� We proposed an algorithm by fine‐tuning the Faster R‐CNN
for vehicle detection and classification. Our proposed al-
gorithm can detect smaller objects (vehicles) that are even
obscured from the camera.

� We generated a local dataset with the collaboration of local
Police authorities because every country has its traffic pat-
terns, which generalises our traffic congestion problem, and
an approach for scheduling traffic lights based on traffic
density at the road junctions is proposed.

� We leveraged the Vehicle COCO dataset, which our pro-
posed algorithm detects and classifies the vehicles perfectly
day and night. Our proposed algorithm improved the ac-
curacy of the detection and classification of vehicles.

The organisation of this work is as follows. Section 2
presents the related works available in the literature. We explain
the methodology of our proposed architecture in Section 3.
The implementation details of this work are presented in
Section 4. Section 5 highlights our proposed architecture's
experimentation details and results. A discussion of our work is
available in Section 6. The threats to validity are presented in
Section 7. Finally, we conclude this work in Section 8.

2 | RELATED WORK

Osman et al. [9] proposed a traffic management system based
on computer vision and image processing. Two methods were
used, one based on hardware and one designed without
hardware support. This study was conducted in a replicated
environment where optimisation time was measured with
substantial evidence. With a fixed travel time of 180 s,

approximately 720 s are needed to complete a cycle at the
intersection of four roads. The dynamic system needs 720 s for
cycle completion. However, based on the strength of vehicles
on the road at a junction, the waiting time for each vehicle is
reduced given the vehicle count, allocating a different waiting
time and execution time. Gomaa et al. [20] proposed a system
to detect the vehicle and then count the vehicle. They used
Faster R‐CNN for the detection of the vehicles. They used the
12 videos for detection and counting, applied the Faster R‐
CNN, and compared Faster R‐CNN with YOLOv2; accord-
ing to the paper, Faster R‐CNN accuracy is greater than the
YOLOv2. In this paper, they detect and count the vehicles but
use only one class in their proposed algorithm. In contrast, we
used different classes, such as cars, buses, motorcycles, and
trucks. Also, we proposed an algorithm to time‐schedule for
signal automation to control the traffic light signals based on
traffic density. We used the COCO Vehicle dataset and a self‐
generated local dataset because each country has different
traffic patterns, so that will more generally solve the issue of
traffic jams in our country.

Guo et al. [21] proposed an intelligent traffic light control
system. The system is suffering from many problems because
the system is manually managed. They used the reinforce-
ment learning technique, which would be used to control the
traffic light problem. For the dataset, they used 1704 sur-
veillance cameras containing 405 million vehicle records. The
paper discussed the synthetic and real‐world experiments to
show the advantages of the proposed system. Also, there
would be some limitations to our proposed system, which
would be eliminated shortly, so this would be more beneficial
for the real world. One of the plans is to convert the two‐
phase traffic light to multiple‐phase traffic, which is highly
complicated to design, but it will be a more realistic state
transition.

Alghyaline et al. [22] proposed a model for counting ve-
hicles. They used YOLO and Kalman filters and the Hungarian
algorithm for object detection and tracking, respectively. They
divided the road into two zones, and vehicles that are income
in these two zones will be counted. They used 90 min of
Highway Roads YouTube videos in their dataset containing
200,000 frames and 939 samples for training their proposed
convolutional neural network (CNN) model. According to this
paper there, the proposed model accuracy is 88.72%.

F I GURE 1 Traffic jams captured from closed circuit television camera's (a) front and (b) back views.
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Dai et al. [23] proposed a model for counting vehicles
using CCTV video. They followed the deep learning technique.
They used 6134 RGB images in their dataset. The proposed
model is based on three steps: detecting the object, tracking the
object, and using the trajectory process for traffic flow infor-
mation. The vehicle counted according to the vehicle type.
According to this paper, its accuracy can reach more than 90%.

Mirthubashini et al. [24] presents a comparative study of
vehicle detection using deep learning technologies. According
to the paper, if we count vehicles on different road lanes, we
quickly set the traffic light signals dynamically, which is helpful
for intelligent traffic light systems. The authors reviewed
different deep learning techniques, for example, the YOLO
technique, which is high‐speed detection and is best used in
real‐time processing, but it is not good in the case of accuracy.
A single shot detector (SSD) is used for the best results, but it
is too slow and not best for smaller object detection. Faster R‐
CNN works best for dynamic things and is also good for
overlapping objects, but it is used in many passes for single‐
object detection. Haar cascades work well if our concern is
only with speed. Background subtraction is suitable for a quick
recovery but not for sudden changes. According to the paper,
YOLO gives 86.7% accuracy. Faster R‐CNN gives 69%, and
the future result is to improve the accuracy, and the system is
automated for the select needy region to improve accuracy.

Zhu et al. [25] proposed a deep learning model for esti-
mating urban traffic density. The authors used the deep
learning technique single shot multi box detector to detect
vehicles. They collected images from the unnamed aerial
vehicle from five different intersections. They used 101,970
frames, and an almost 56‐min video‐enhanced single‐shot
multiplex used ResNet instead of VGGnet and Alex net.
ResNet can detect objects deeply. The reported model accuracy
is 93.7%. Qi et al. [26] proposed a system for traffic analysis
that used computer vision approaches. They used SSDs to
detect objects; their work's objective is to find and monitor
vehicle pedestrians. The system takes the images and detects
the objects using SSD; based on this, the next move to another
section, traffic modelling, contains the statistics of vehicle
humans and traffic signs. This next section is the traffic anal-
ysis based on traffic modelling and environmental information,
which defines the two types of traffic analytics: traffic volume
information and traffic congestion information. They used
24 h of video from each hour and 10 min for traffic volume
estimation. According to the paper based on different types of
vehicles, detection accuracy is more than 70%. Kamath et al.
[27] introduced a groundbreaking method for connected and
autonomous vehicles (CAVs) in urban road traffic. The paper
discusses the challenges of unreliable navigation system con-
nectivity in such environments. They proposed a traffic anal-
ysis model to generate accurate navigation paths for CAVs by
analysing sensor‐oriented traffic data. A knowledge exchange
mechanism was developed to gather and create new traffic
knowledge from on‐road vehicles. CAVs utilise this informa-
tion for navigation, resulting in improved precision.

Wang et al. [28] proposed a model for vehicle classification.
It used Faster R‐CNN for object detection. It consists of two

elements regional proposal network and five other convolution
layers that work as a detection network. Faster R‐CNN is an
updated version of Fast R‐CNN; it eliminates the selected
search with the RPN. The proposed model built the regional
proposed network with the help of the top of the last
convolution layer. Two‐hundred and fifty‐six dimension is the
feature map of the sliding window. The ReLU feature con-
verted it into two fully connected (FC) layers. Bounding box
regression is known as the reg layer; another layer is the box
classification layer and the cls layer. The prediction of 4K co-
ordinates in the k proposal used a reg layer. For output of 2K
scores, which are the chances of objects involved in k, pro-
posed to use cls layer. The proposed model used a 3 � 3
convolution layer and two pairs of 1 � 1 convolution layers.
Previously shared convolution layers of RPN and detection
network in the proposed network used ZFNet as the network's
backbone. They modified the ZFNet by adding two more
convolution layers and one new max‐pooling layer. Now, it
contains 7 convolution layers. According to the paper, doing
this improves the performance of the expression network. For
the dataset, they used 37,578 pictures for training. According to
the paper, the proposed model accuracy is 90%.

Suhao et al. [29] used Faster R‐CNN on MIT and Caltech
car datasets for vehicle classification. They used Faster R‐CNN
and improved the regional proposal network, which was an
important part of CNN, and that is a deep learning approach
for the detection of objects. In this paper, they improve the
layer in the Faster R‐CNN model by modifying the RPN
network. It outputs 256 characteristic maps via the one time
3 � 3 convolution kernel. By doing this, the network structure
becomes more superficial and improves computational
complexity. The vehicle type detection system first gets the
dataset, then makes the dataset enter vehicle images for
training, then CNN extracts features and then enters picture
features. Then, it moves to RPN networks, Fast R‐CNN, and
Faster R‐CNN moves forward to the training vehicle classifi-
cation model, and then the result is vehicle type detection. For
the dataset, they used 5038 car images, 987 minibus images,
and 1207 SUV images. According to the paper, the accuracy of
different vehicles based on different sample sizes and networks
is different. The highest accuracy for the car, bus, and SUV
using the VGG16 network is 84%, 83%, and 78%, respectively.

Sridevi et al. [30] proposed an effective traffic management
model based on the computer vision technique. Gaussian
Mixture Model is used for traffic automation. They used the
MIT traffic dataset that contains 20 videos, and each video
contains 8294 frames. According to Ref. [30], their proposed
model shows 95% accuracy in the MIT dataset. The highway
data set contains 254 videos out of 20 that are used to input to
the project to measure accuracy; each video contains 53
frames, and our dataset shows 15% accuracy. Yadav et al. [31]
proposed a system to improve ITS by developing a self‐
adapting algorithm to control road traffic based on deep
learning techniques. It used state‐of‐the‐art real‐time object
detection based on the DCNN YOLO. YOLO offers break-
neck interface speed with minor compromises in accuracy,
specifically at lower resolutions and with small objects.

4 - ABBAS ET AL.
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Wu et al. [32] discussed the challenges of object detection
in low light and proposed a method for picture enhancement
and object detection that makes use of edge computing and a
multi‐task‐driven framework. Accurate results are obtained
when picture enhancement and object detection technologies
are combined. The experiment on a cloud computing system
illustrates the significance of the suggested approach for low‐
light object detection efficiency in mobile photos and envi-
ronments with poor lighting.

Tang et al. [33] examined the impact of many aspects on the
evolution and effectiveness of such transformations, as well as
the significance of borderless collective remodelling in the
intelligent connected car industry. The findings indicate that an
advanced collaborative effort, including technology policy pro-
viders and auto endeavours, is vital for the successful evolution
and change of the intelligent connected car business. Chen et al.
[34] proposed a procedure enhancing the validity of the AI
model deployment in the 6G vehicular edge computing and took
the object detection task as an example. The approach is based
on model stabilisation and model adaptation; for model stabi-
lisation, the latest model needs to be implemented to improve its
validity. For the adaptation stage, there are two methods:
knowledge distillation and model parameter pruning. These
methods adjust between model performance and run‐time re-
sources to maintain the implementation of the AI model. When
these model strategies are deployed onboard, the edge terminal
proposed model mean average precision accuracy is 80.1%.

Previously mentioned approaches have solely utilised
limited visual picture data. In contrast, our research combines
local images and publicly available data, enabling us to address
critical traffic challenges effectively. Our main objective is to
develop a faster R‐CNN‐based traffic signal automation sys-
tem. By leveraging live video streams from CCTV cameras, we
have devised an algorithm that accurately counts vehicles using
advanced computer vision technology. This method enhances
traffic flow by automatically adjusting traffic signal timing ac-
cording to the traffic load.

3 | PROPOSED METHODOLOGY

Many of the methods described here have focused on limited
visual data. We use local image data to generalise our traffic
situation. Our proposed architecture is presented in Figure 2.
The input image is passed through the convolution neural
network for object detection and class detection. A feature
map of the image is generated. The generated feature map is
assigned to the RPN block, where the feature vectors are
extracted, and object proposals are generated. We assign those
object proposals to the Faster R‐CNN block, where an output
of the detected class is returned. CNN is used for vehicle
counting of images. Faster R‐CNN [35] uses the image as input
and provides the convolution feature map; a separate network
is used to predict region proposals.

Before training the Faster R‐CNNmodel, we need to adjust
specific hyperparameters to achieve optimal performance. Some
of these hyperparameters include learning rate, image resizing,

number of classes, feature extractor, batch size, optimiser, and
number of epochs, among others. Fine‐tuning these hyper-
parameters is crucial to obtain better results, considering the
unique characteristics of our dataset, problem requirements, and
available hardware resources. Detailed information regarding
the hyperparameter settings can be found in this section.

3.1 | Pre‐processing

When images are received at the edge server, they are pre-
processed through the vehicle object detection algorithm. In
preprocessing, we set the image size, cropped the unwanted
empty areas, and adjusted the contrast to the proper brightness
and low light areas adjustment of the images. The contrast
transforming function is proposed as follows.

ψðcÞ ¼ 4c − 6c2 þ 4c3 − c4 ð1Þ

where c is the neighbourhood's contrast value and gives the
updated contrast value images received on servers from all the
cameras at a traffic intersection. At the same time, after vehicle
detection, the specific class is assigned to the vehicle based on
the object probability score and the class probability scores,
respectively, and then based on the vehicle density time
scheduling for the signal automation and, after that, based on
the above steps decision making. The classification framework
of our proposed work is shown in Figure 3.

3.2 | Transmission of data

Due to the increasing number of IoT devices, most data are
uploaded daily to the cloud. The best way to handle this is first
to process the data on edge and then send it to the cloud.
Different methods are used for fast data processing, such as
cloud computing [36] and cloudlet, but cloud computing is not
good when we need fast processing. It is quite complicated and
time‐consuming to first put all the data on the cloud and then
search for this method. We need robust computation and
processing power, so we used edge computing. We process the
data on the edges of the node edge, which means we use the
computing devices or resources of the network along with a
dedicated path and cloud server.

We set a node with a tiny microprocessor in our proposed
system containing the Nvidia Jetson GPU. This node acts as an
edge device. The process streams data for all traffic light signals
placed at the road's intersection and passes them to the node,
which makes a decision based on the density of the vehicles.
Figure 4 illustrates our proposed data transmission framework.

3.3 | Feature extraction

In this module, we focus on feature extraction, a process that
aligns with the operations of CNNs. The extracted features are
represented as an n‐dimensional array. Specifically, our
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architecture, as illustrated in Figure 2, employs the VGG 16
model to generate feature maps. This transformation process
elevates the information from low‐level to high‐level across
successive layers. VGG 16 is structured into five convolutional
blocks: the initial two blocks each comprise two 2D convolu-
tional layers followed by a max‐pooling layer, while the latter
three blocks each contain three convolutional layers paired
with max‐pooling layers. In our configuration, we omit the
dense and flatten layers of the network. Consequently, an input
image with dimensions 1920 � 1080 � 3 is transformed into a
feature map of dimensions 35 � 62 � 512 after processing.
This feature map then serves as the input for the subsequent
module and the softmax classifier. The initialisation of weights
and biases is set to zero, with adjustments made through
backpropagation as the model learns.

3.4 | Region proposal network

For implementing the work of Ren et al. [35], 9 anchors with
rules are pinched on every receptive field of the feature map.
Each anchor's coordinate is the regression layer's output in the
RPN module. An anchor is a box that moves overall on the
image. The foreground and background probability score is the
output of the class layer. After applying non‐max suppression

with intersection over union (IoU), the threshold value is 0.3
for non‐positive, which represents the background, and 0.7 for
positive anchors representing the foreground. The region of
interest (RoI) pooling layer is applied to selected candidate
proposals and feature maps for uniformly sized feature maps.

3.5 | Backbone architecture

We utilised the VGG‐16 architecture to extract the convolution
features, which is this work's backbone. The RPN and classi-
fication network both use the features extracted from CNN's
design. The frames coming from the videos are first normal-
ised into the fixed range. In our case, we have resized each
frame into 256 � 256 � 3.

After resizing, the image is passed to the CNN architec-
ture. A stride of 1 is used in the third layer, whereas a stride of
2 is used in the fourth layer. After max pooling in the fourth
layer, the size is reduced to 56 � 56 � 128. Pooling is
implemented in the fifth and maximum convolution layers by
applying 256 filters with a 3 � 3 kernel size. From 7 to 12
layers, we have two sets of 3 convolution layers. Five hundred
and twelve filters are applied on these layers with a kernel size
of 3 � 3 and a stride of 1. After the 12th convolution layer, we
got a feature map of size 7 � 7 � 512. In the 13th FC layer, we
flattened the features into the 25,088 features.

F I GURE 2 Our proposed architecture for vehicle detection and identification.

F I GURE 3 Classification framework of our proposed work.

F I GURE 4 Data transmission flow in our proposed framework.
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In our architecture, there are three FC layers; the first two
FC layers map the 4096 features, whereas, in the last FC layer,
the output is mapped to the number of classes on which we
have trained our system. The RPN receives the characteristics
from the convolution layer for object identification and
classification.

3.6 | RoI classifier and bounding box
regressor

Feature maps of size 7 � 7 go through R‐CNN, classifying RoI
into specific classes like a vehicle, human, and background.
RoI, which has a background class, is not considered for the
training process. The network contains two FC layers that
output 4096D features and predict the class probability scores.
The bounding box regressor updates the coordinate and RoI
proposal size. The loss function used in this work is the sum of
RPN loss and R‐CNN loss. The detected object count gives
the vehicle count, and the total number of vehicle counts in the
frame shows the traffic density.

3.7 | Calculating lane with high traffic
density and next signal time

We get videos from cameras located at four‐lane intersections,
count the number of vehicles in each lane, and calculate the
lane with high priority using a threshold value. The threshold
value is dynamic, and it is measured to be 2 � 3 of the
maximum count of the object at a specific timestamp (see
Equation 2).

Threshold ¼
2
3
�maximum number of vehicle ð2Þ

The green signal time for high‐priority lanes is calculated
by multiplying the fixed signal time by 4. For example, if the
fixed signal value is 30 s, then high‐dense lane signal time is
calculated by multiplying 30 � 4 s.

There are two streams in the proposed model for vehicle
detection; one is used for the RPN, and the other is used to
recognise the vehicles. In older versions, the selective search
method is used in the R‐CNN to detect the object boundaries
within the image. However, this technique is costly in terms of
time and computation. In an RPN, the time cost is lower than
the selective search because most of the computation time is
spent by this process for object recognition. Figure 5 explains
the flow of the proposed system.

3.8 | Vehicle detector

For the vehicle detectors, the RPN used anchors to draw the
anchors and find the output, which contains most likely the
objects. Top anchors that give more output are selected; for
example, we selected the top 2000 anchors based on their score

output. RPN network is the lightweight used to scan the image
by sliding windows over the anchors. For the similarity of the
current boundary box with the other boundary boxes, overlap
of IoU is used. Intersection over union is calculated by using
the following equation.

IoU ¼
Area of overlap of compared boxes
Area of union of compared boxes

ð3Þ

For the training, the anchor value must be positive or
negative. If the value is neither negative nor positive, it is not
considered for training. So from all the above information, the
loss function is described by this equation.

LossðPk;TkÞ ¼
1
nclass

X

k

Mclass
�
Pk; P∗

k
�

þ λ
1
nreg

P∗
kMreg

�
Tk;T

∗
k
�

ð4Þ

In the above equation, K is the number of objects. Pk rep-
resents the probability of objects that define the network's an-
chors. Pk* represents the ground truth probability value whose
value is positive for 1, and the value is negative when it is 0.

Tk defines the four coordinates of the image based on
network prediction decided where the object is found.
Pk∗MregðTk;Tk∗ defines that regression loss is activated if the
anchor value is positive; otherwise, it will not activate. Anchors
or sliding windows of the regional proposal network scan
parallel because of the convolutional nature of RPN us-
ing GPU.

The RPN does not scan the whole image. It uses extracted
features of other networks within the same architecture,
defined as the backbone's feature map. A backbone feature

F I GURE 5 Time scheduling for signal automation in our proposed
work.
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map is useful for the RPN to extract features efficiently and
ignore feature duplication. The proposed model predicts two
outputs.

After getting the RoI, one is used for object classification,
and the second defines the bounding box size and location.
There is a challenge when it defines detected object classifi-
cation. RPN proposes the variable size of the RoI; due to this
reason, the classification is not correctly performed. Because
for the classification, we need images of the same size. The
solution to the problem is using RoI pooling, which crops,
fixes the image size that contains the object, and then resizes it.
The Backbone Architecture of the convolution feature for
classifying the detected objects is defined in the next section of
the methodology.

3.9 | Proposed CNN for vehicle detection

A deep CNN design with fixed structure sizes of 2262 entities
is utilised to solve the N‐ways classification problem. A CNN
is applied for every training frame Ix, x = 1 … X and the score
is computed by yx ¼ wπðIxÞ þ BeRn through the FC layer
having N linear predictors Rn∗D;BeZ each for one identity. For
the computation of the loss value, given scores are compared
with the ground truth label value of each class [37]. When
training is completed, the classification layer is removed, and
the given score is used for vehicle detection using Euclidean
distance. Table 1 shows the layer information used in our
proposed network.

The cropped face image size of 224 � 224 � 3 is used as
input in our proposed architecture. A total of eight blocks are
used of which five blocks are used as a convolution, and three
are FC layers. Each convolution layer is based on non‐
linearities such as ReLU, the rectification layer, and max‐
pooling. The three Conv layers and the two FC layers have
an output of 4096 dimensional, and the output of the last FC
layer is 2622 dimensional. It depends on the number of classes
used in the dataset. To normalise the unnormalised vector, we
used the softmax layer on to the second FC layer and presented
predictions into the probabilistic form. The given equation can
calculate the probabilistic score.

Ps ¼
ePs
P

xePx
for all y inf1; 2::ng ð5Þ

4 | IMPLEMENTATION DETAILS

4.1 | Training parameters of proposed
architecture

A locally generated dataset is used in our proposed architec-
ture. We collected over 5000 images from live‐streaming
cameras of the safe cities placed on traffic signals. All images
are labelled using the ‘Labelimg’ software that converts the
image label into XML code. We also collected the dataset on
weather conditions, such as rainy and sunny days and different
daylight conditions. Figure 6 shows the sample instances from
our collected dataset. Each image label defines the name of the
particular vehicle. We have the following objects on which the
system is trained for detecting vehicles: Car (Pickup, Jeep, and
Double Cabin), Motor Cycle, Rickshaw (QingQi), Bus, Wagon
(Hiace, Hiroof, and Coaster), Minitruck (Mazda and Shehzore),
Trolley, and Truck (All type, Single/Double).

To reduce average loss during network training, we identify
the parameters for the softmax layer. The proposed architec-
ture weight starts with the help of the random sampling of the
Gaussian Mixture and with the value of zero means, and the
standard deviation is set to 10−2. From the start, the bias value
is set to zero. All the training images' values are resized
correctly with the minimum frame width, and the size is 256.

Nevertheless, the colour augmentation is not performed.
Weight is also optimised through stochastic gradient descent
(SGD) with the help of the batch size of 64, having a coeffi-
cient momentum of 0.9. For the model, regularisation weight,
decay, and momentum are used.

After that, the coefficient value is set to 5 � 10−4, and after
the FC layer, the drop‐out layer is used with a ratio of 0.5.
From the start, the learning rate is 10−2; after that, its value
decreases with the multiple of 10−1 if the accuracy of the

TABLE 1 Information of layers used in our proposed architecture.

No. Layers Filter size Kernel Stride Padding

1 Conv 11 � 11 96 4 0

2 Conv 7 � 7 128 1 2

3 Conv 5 � 5 256 1 1

4 Conv 3 � 3 256 1 1

5 Conv 3 � 3 384 1 1

6 FC 1 4096 1 0

7 FC 1 2622 1 0

8 FC 1 2622 1 0

Abbreviation: FC, fully connected. F I GURE 6 Collected samples of our dataset.
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validation data is not increasing. We used 200,000 epochs for
the training of our proposed network.

4.2 | Loss function

In deep learning approaches, the error is calculated by
comparing the predicted label value to the actual label value.
The loss function is used for the computation of error. This
technique is used to verify the working of the trained model.

If the model prediction varies significantly from the actual
results of the training data set, the loss function's value will be
high. With the help of some optimisation parameters, the value
can be reduced. For the performance of the model, the loss
function is critical. The mean square error (MSE) function is
used for such calculation. MSE is a commonly used loss
function. It finds by comparing the value of the actual label
with the prediction. The loss function is only concerned with
an average magnitude error rather than the direction.

In more detail, the value is penalised compared to less
deviated prediction because the square prediction value is far
from the actual value. Due to the large dataset and the
complexity of the deep neural network, computation power is
significant.

MSE ¼
1
N

XN

n¼1

�
P̂n − Pn

�2
ð6Þ

In the above equation, N represents the number of data
points, while the predicted value defines the P̂ and P for the
actual values of the particular sample.

5 | EXPERIMENTAL EVALUATION

The base of our proposed network is built on two elements:
the computation power and the amount of data. The afore-
mentioned variables have an inverse relationship with the ac-
curacy of computer vision and deep learning systems. Deep
learning application is, therefore, essential in our proposed
technique, which combines computer vision and deep learning.
The data set description is defined in the following section.

5.1 | Dataset preparation

5.1.1 | Punjab Safe City cameras dataset

In our proposed work, we used two types of datasets. In the
first dataset, we used videos from the traffic signal‐mounted
Punjab Safe City CCTV cameras in Lahore, Pakistan. Our
data collection was constructed utilising several cameras,
various viewpoints, and various times. To test the functionality
of our proposed algorithm and how it will work in various
settings, we obtained the dataset at various times by changing
the camera angles. For example, we used rainy‐day data and

sunny‐day data. We also utilised night‐view camera videos to
test how it behaves at night.

For the dataset, the camera captures images of vehicles
from the front and back. Using both the front and back per-
spectives of the traffic signal road, we evaluated the usability
and precision of our proposed method to determine which
viewpoint yields good results. Table 2 represents the dataset
distribution for different views regarding daylight illumination
and camera angles. Such views are illustrated in Figure 7.

Once the videos are obtained, the following step turns the
collected video data into image frames. We leverage a software‐
based conversion, ‘Free Video to JPG Converter’, to convert
videos into .jpg formats. After receiving frames, we move on to
image preprocessing by annotating the images with ‘Labelimg’
software. The XML files for each image utilised during model
training are saved in the backend.

Fine‐tuning is performed for the inception v3 module of
our CNN‐based architecture. Following the inception module,
the linear network is designed. The dataset is divided into 70%
training and 30% testing data. We used the tensor flow deep
learning framework to train the inception module. Python is
used to implement the code of our proposed network.

5.1.2 | COCO Vehicle dataset

We also used the COCO Vehicle dataset, a publicly available
dataset [19]. We also trained our model on that dataset.

TABLE 2 Dataset distribution over views.

Views (angles) Data (frames)

Front view 6000

Back view 4000

Sunny view 5000

Rainy view 2000

Night view 3000

F I GURE 7 Sample instances of our collected dataset with respect to
different views.
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Individual images of size 640 � 640 and classes such as car,
bus, motorcycle, and truck are assigned to the network. We
used 13,000 images for training, 3800 images for validation,
and 1900 for testing. Samples of the COCOVehicle dataset are
shown in Figure 8.

5.1.3 | Crowdhuman

We also trained our model on the Crowdhuman dataset, which
is a publicly available dataset [38]. This dataset has two classes:
head and person. We used 3300 images for the training set and
1100 for the validation set. We used a 75% dataset for training
and a 25% dataset for validation. The size of images is
640 � 640. Samples of the Crowdhuman dataset are shown in
Figure 9.

5.2 | Object detection results

Nvidia‐1080 Ti GPU, 12 GB memory, was used for training.
We used the TensorFlow deep learning framework for the

architecture. We initially annotate the data before training our
proposed Faster R‐CNN‐based network for object detection
and recognition. On annotating data, we draw attention to a
particular object in the dataset's images. Many epochs are
needed to complete the training procedure because we are
training the model from scratch. The front and back views for
detected vehicle counts are represented in Figure 10a,b,
respectively.

If there is a significant discrepancy between the loss value,
training accuracy, and test accuracy, then the model has likely
been overfitted. Overfitting would happen if the model learned
the noise and fluctuation of the training dataset. The issue with
overfitted models is that they need to perform better on new
datasets, and their capacity to generalise is compromised. The
answer to the overfitting issue is to drop out. The dropout
amount was initially set to 0.7, but it can be modified based on
the predefined threshold between training and testing accuracy
and loss. After the completion of training on our local self‐
generated data set from Punjab Safe City cameras, our
training accuracy is 97.7%, and validation accuracy is 95.7% as
shown in Figure 11a,b, respectively.

For the COCO Vehicle dataset, our model detected
different vehicle categories (see Figure 12a), a car far from the
camera, for example, the smallest object (see Figure 12b), and
in Figure 12c, our model detected the three cars at night time.
Our model CA is more than 96.6% on the COCO Vehicle
dataset, as shown in Figure 13.

The model is trained in over 200,000 iterations. SGD is
utilised for weight optimisation. For the first 1000 epochs, we
predetermine a learning rate of 10−1, which declines by 10%
after 20,000 epochs. The dropout ratio was also added to
reduce overfitting. After 3500 iterations, as shown in
Figure 14a, we were able to achieve 91.26% accuracy. The
graph shows we have a 93.6% accuracy rate after 3500 itera-
tions on the training data. When we reach the highest level of
testing accuracy, the training is terminated. Figure 14b shows
how accurate the test results are. It can be seen from Figure 14
that the training and testing accuracy have grown simulta-
neously, indicating that our proposed model does not overfit.

For the Crowdhuman dataset, we used 5000 epochs; our
proposed model's CA is 92.3%, as shown in Figure 15. Our
model detected humans accurately (see Figure 16a), the
model also detected six persons accurately (see Figure 16b),
and in Figure 16c, our model detected the people in line
accurately.

5.3 | Comparative analysis

According to a study [39], the suggested model's vehicle
detection accuracy is 94.20% since Arora et al. [39] used
Faster R‐CNN and used a self‐generated dataset of 3975
pictures, as shown in Table 3. Mirthubashini et al. [24] used
the COCO dataset and trained YOLOv3, and their model's
detection accuracy is 76%. The proposed model's vehicle
detection accuracy for the work of Dai et al. [23] is 87.6%
when using YOLOv3 and a self‐generated dataset containing

F I GURE 8 Sample instances from the COCO Vehicle dataset.

F I GURE 9 Sample instances from the Crowdhuman dataset.
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F I GURE 1 0 Detected vehicles count from (a) front and (b) back views of Punjab Safe City cameras.

F I GURE 1 1 The (a) training and (b) validation accuracies of our local dataset after 200,000 epochs.

F I GURE 1 2 Detection of vehicles (a) car, bus and truck, (b) smallest vehicle objects, and (c) at night.

ABBAS ET AL. - 11
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6134 photos. According to Qi et al. [40], the proposed
model's accuracy is 81%, and they employed SSD and 24‐h
videos as a dataset. Chakraborty et al. [12] suggested a
model that uses YOLO and uses 2418 photos as a dataset,
with an accuracy rate of 91.5%.

Song et al. [41] suggested a model that used YOLO v3 for
object detection and used 11,129 images as a dataset. We
compared our proposed work with their work, and it can be
seen from Table 3 that our method outperformed theirs. We
also considered another recent work for comparison in which
Mittal et al. [42] proposed a hybrid approach of using Faster R‐
CNN and YOLO together using a majority voting classifier.
However, due to using a majority voting classifier, their pro-
posed method is prone to biased predictions, ignoring the
minority class. This results in poor performance for the mi-
nority class and leads to reduced overall accuracy.

Our proposed model uses the COCO Vehicle dataset [19]
and the self‐generated dataset from Punjab Safe City cameras.
Our model detection accuracy is 95.7%, and our CA is 96.6%
after we fine‐tuned the Faster R‐CNN. Our proposed model's
average precision, recall, F1 score, and vehicle detection ac-
curacy in the day and night modes were 0.94, 0.98, 0.96, and
0.95, respectively.

6 | DISCUSSION

Our proposed model is applied to the Lahore Smart City
cameras dataset and achieved state‐of‐the‐art performance.
The work using Faster R‐CNN for traffic light automation also
lacks literature. We used a local image dataset that will more
generally address the issue of traffic jams because each country
has different traffic patterns. When we have a moving dataset, a
Faster R‐CNN algorithm is best for object detection, and in
the case of the practical, this is the best technique.

The proposed system delivers the current count based on
detected vehicles and determines the time based on the current
density achieved by the proposals. Faster R‐CNN is utilised for
vehicle detection, which detects the automobile after the
detection vehicle is classified. The vehicles are found once the
categorisation and object detection network has passed the
frame. On employing our proposed technique from a rear
perspective, the detected object remains useful only up to the
extent of the pedestrian crossing. However, the front view
identifies only vehicles in the current lane (road) and does not
include the opposite side of the road. Therefore, in the case of
the back view, we retrieved the objects in front of the red lane,
and in the case of the front view, we took that lane into

F I GURE 1 3 Class accuracy on test data by using Faster R‐CNN on
the COCO Vehicle dataset.

F I GURE 1 4 Accuracy of (a) train and (b) test data after 3500 epochs.

F I GURE 1 5 Class accuracy by using Faster R‐CNN on the
Crowdhuman dataset.
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consideration. We assign the label associated with the detected
object if the RoI of the detected object matches.

The passenger car unit (PCU) or passenger car equivalence
metric is used in transportation engineering to measure traffic
speed on the road. Different values are given to various ve-
hicles depending on how much area they occupy. Table 4
displays typical PCU values used in our proposed system. Our
proposed model, which uses a simple neural network design,
outperforms current state‐of‐the‐art techniques. Our

suggested technique determines the current number of various
cars on the road, assigns the PCU values of each vehicle to the
traffic signal time, and then adjusts the signal times
appropriately.

Our proposed model has some limitations. For example,
we need large labelled image data to train the model and high
computational resource requirements for training. The system
may struggle when vehicles occlude partially or fully with other
objects such as buildings, trees etc. Our method is sometimes

F I GURE 1 6 Detection results of the Crowdhuman dataset (a) Detection of head and body in the playing court, (b) detection of the people's head and body
on the road and (c) detection of heads.

TABLE 3 Comparative analysis of our proposed method with state‐of‐the‐art methods.

Paper Year Model Dataset Precision Recall
F1
score Accuracy

Chakraborty et al. [12] 2018 YOLO Self‐generated 2418 images 0.88 0.94 0.91 91.5%

Qi et al. [40] 2019 SSD Self‐generated of 24 h videos 0.76 0.70 0.73 81%

Song et al. [41] 2019 YOLOv3 Self‐generated 11,129 images 0.88 0.89 0.88 94.9%

Dai et al. [23] 2019 YOLOv3 Self‐generated 6134 images 0.87 0.79 0.83 87.6%

Mirthubashini et al. [24] 2020 YOLOv3 COCO 0.83 0.76 0.79 76%

Arora et al. [39] 2022 Faster R‐CNN Self‐generated 3975 images 0.90 0.97 0.94 94.20%

Mittal et al. [42] 2023 Faster R‐CNN þ
YOLOv5

KITTI and FLIR 0.95 0.96 0.93 95.4%

Our proposed method 2023 Faster R‐CNN Self‐generated Punjab Safe City
cameras, COCO vehicle

0.94 0.98 0.96 95.7%,
96.6% (CA)

Abbreviation: CA, class accuracy.
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also prone to overlapping objects coming in the Smart City
cameras, where we struggle to detect the objects. An adver-
sarial attack can also force our method to misclassify the ob-
jects, which is also one of the failure cases for our proposed
method.

The computational complexity of the proposed method-
ology, similar to other deep learning approaches, is influenced
by various factors such as the input image size, the number of
RoI, the depth of the backbone network, and the number of
classes. In our methodology details, we have comprehensively
described each of these aspects and their implications on the
overall computational workload.

Previous automation methodologies depend on sensors
designed to identify vehicles on narrow pathways. However,
they cannot count the vehicle because the system only detects
it and is set to repeat the value until there is no traffic on the
road, increasing the time accordingly. In contrast, our proposed
system operates in real time, sets the time based on traffic
density, and counts the vehicle until it stops. The proposed
system takes input from four roadside locations, and there are
then two cases. First, it determines whether vehicles are on all
sides of the road. If vehicles are on all sides of the road, our
system has set the maximum green time to 120 s. Next, it
determines whether the traffic volume is at its maximum. If it
is, the system increases the green time. If it is below the
maximum threshold, the system decreases the time based on
the current traffic volume based on the PCU value. The system
will turn the light red until a vehicle arrives if there is no traffic
on the road; however, once a vehicle arrives, the system will
switch the signal green and function immediately.

This work presented a framework for automating the
traffic light signals using an improved Faster R‐CNN deep
learning‐based approach to local image data. Our proposed
methodology for signal automation by estimating vehicle
counting consisted of the following steps.

1. In the central server, taken images are communicated.
2. Cameras at the intersection are used for pre‐processing the

dataset.
3. Detection of vehicles and counting at each lane.
4. Line estimation with maximum count and timestamp of the

current signal.
5. Predict the next duration of the signal.

7 | THREATS TO VALIDITY

The most significant threat to ITS is network attacks that spe-
cifically target the regular operational activities of devices and
equipment, resulting in service delays and potential loss of in-
formation. Cybercriminals often employ malware as a common
tool to disrupt various public and commercial businesses,
including government offices and other infrastructures that rely
heavily on connectivity and communication. External factors
such as changes in regulations, policies, or infrastructure devel-
opment may impact the performance and relevance of our
proposed ITS solution over time. Inaccurate or imprecise data
collection methods can lead to measurement bias, affecting the
quality and reliability of the information used in our method.

To mitigate these threats, thorough research, testing, and
evaluation are essential before implementing ITS on a large
scale. It is crucial to validate the ITS using real‐world data,
conduct robust pilot studies, and engage stakeholders to gain
valuable feedback and insights. Addressing privacy, security,
and ethical concerns is crucial in ensuring public trust and
acceptance of these technologies.

8 | CONCLUSION

In this work, we propose an intelligent traffic light system to
solve traffic jams. Our proposed system counts the vehicles
based on detected vehicles and dynamically assigns the traffic
signal time according to each vehicle's PCU value. We fine‐tune
two different architectures for traffic classification of the image
and object detection for traffic light automation. We label the
local image dataset based on image classification, and based on
object detection, we generate the predictive instances. The
experiments show that our proposed method gives better ac-
curacy than the traditional method. Our proposed method is a
real‐time traffic signal automation system that uses Faster R‐
CNN for vehicle detection. Based on the labelled dataset,
our proposed method yields the vehicle's current count based
on vehicle density. After getting a current count of vehicles on
all sides of the road, the system takes live streaming of CCTV
cameras placed on the traffic signal. There is communication
between central servers, and then, based on density, it will
dynamically set the time based on each vehicle's PCU value.

Our proposed work is helpful for ITS by automating traffic
signals. The proposed traffic light management system based
on real‐time data solves many problems by saving resources
such as time, energy, fuel etc. It also saves economic costs,
which will be helpful for any country's economy. In the future,
we aim to propose efficient methods using YOLOv8 for better
detection performance and enhancing the traffic management
system. We will also propose methods to track the vehicles
properly and measure the vehicle's current speed.
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TABLE 4 PCU values of different types of vehicles.

Vehicle type PCU value

Motorcycle 0.25
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